Comparison of assays for the detection of West Nile virus antibodies in equine serum after natural infection or vaccination.
نویسندگان
چکیده
West Nile virus (WNV) mainly infects birds, horses and humans. Outcomes of the infection range from mild uncharacteristic signs to fatal neurologic disease. The main objectives of the present study were to measure serum IgG and IgM antibodies in naturally exposed and vaccinated horses and to compare results of haemagglutination inhibition test (HIT), enzyme-linked immunosorbent assay (ELISA) and plaque reduction neutralisation test (PRNT). Altogether 224 animals were tested by HIT for WNV antibodies and 41 horses were simultaneously examined by ELISA and PRNT. After primary screening for WNV antibodies, horses were vaccinated. Samples were taken immediately before and 3-5 weeks after each vaccination. McNemar's chi-squared and percent agreement tests were used to detect concordance between HIT, ELISA and PRNT. Analyses by HIT confirmed the presence of WNV antibodies in 27/105 (26%) naturally exposed horses. Sera from 57/66 (86%) vaccinated animals were positive before the first booster and from 11/11 (100%) before the second booster. HIT was less sensitive for detecting IgG antibodies. We could detect postvaccination IgM in 13 cases with IgM antibody capture ELISA (MAC-ELISA) and in 7 cases with HIT. WNV is endemic in Hungary and regularly causes natural infections. Protective antibodies could not be measured in some of the cases 12 months after primary vaccinations; protection is more reliable after the first yearly booster. Based on our findings it was not possible to differentiate infected from recently vaccinated horses using MAC-ELISA. HIT cannot be used as a substitute for ELISA or PRNT when detecting IgG, but it proved to be a useful tool in this study to gain statistical information about the tendencies within a fixed population of horses.
منابع مشابه
Aserological survey on antibodies against West Nile virus in horses of Khuzestan province
BACKGROUND: West Nile virus (WNV) is a vector-borneagent that is maintained within a bird-mosquito cycle. In humansand equids, infection by this agent is usually asymptomatic, orcharacterized by a mild febrile illness. However, fatal meningoencephalitisor encephalitis may occur. OBJECTIVES:The aim ofthis study was to evaluate the prevalence of WNVinfection andcorrelation of this organism with h...
متن کاملPrevalence of West Nile Virus Infection in the Cities of Neka and Shiraz, Iran
Abstract Background and Objective: West Nile virus (WNV) is a member of the genus Flavivirus that can cause viral infections in human. This study aimed at detecting IgG antibodies against WNV in patients of two cities of Neka and Shiraz. Material and Methods: the participants were 46 possible WNV case from Neka (13 women and 10 men) and Shiraz (10 women and 13 men). IgG assay was ...
متن کاملVaccination against Mosquito Borne Viral Infections: Current Status
Mosquito borne infectious diseases are among important group of diseases worldwide. Vaccination is available for some tropical mosquito-borne diseases, especially for Japa-nese encephalitis virus infection and yellow fever. There are also several attempts to develop new vaccines for the other mosquito-borne diseases such as malaria, dengue infection and West Nile virus infection. In this articl...
متن کاملEquine Immunoglobulin and Equine Neutralizing F(ab′)2 Protect Mice from West Nile Virus Infection
West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab'...
متن کاملInterpretation of Serologic Test Results and Evaluation of Humoral Immune Response After Vaccination Following Infection with COVID-19 Disease
SARS-CoV-2 virus infection induces a cellular and humoral mediated immune response and produces antibodies against viral antigens such as nucleocapsid (N) protein and spike (S) protein. Anti-protein S antibodies also target the spike protein subunit S1 and the receptor binding domain (RBD). Serologic tests can detect the presence of these antibodies in blood serum within a few days to a few wee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Veterinary immunology and immunopathology
دوره 183 شماره
صفحات -
تاریخ انتشار 2017